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Neurobiologically plausible modeling of speech production
and comprehension for improving our understanding of
normal and disordered speech

A neural network model of the brain

iIn which we can insert specific neural dysfunctions at specific locations of the
cortex

gives us a clear association of neural dysfunctions and symptoms of speech
disorders (resulting from simulation studies)

In practice: hard to recruit enough “well diagnosed” patients (concerning type
and severity of speech disorder) willing to participate in clinical studies



g High-level performance system
We want a Neural Network Model like: similar system:
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Goal of modeling: neurobiological plausibility

* Three points: (i) Model must in accordance with neurophysiological /
neuroanatomical data (imaging, EEG, ...), and behavioral data -> “box-and-

arrow” models
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large-scale functional architecture of the brain:
Common model of Cognition (CMC): Stocco et al. 2021

domain / task independent: speaking, gesturing, situational reasoning, relational reasoning,
math task solving, solving any concrete or abstract task ...




Goal of modeling: neurobiological plausibility

* (ii) realistic neuron model: spiking
neuron model as “atomic unit” ->
* leaky integrate and fire neuron
model

* plus: synapse model (exhibitory,
inhibitory) (different degrees of
strength for pule forwarding)

* -> trained “link weights”

No longer: temporal-spatial averaging
of “neural activation level”
(-> 2./3.generation - NNs)
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Leak: exponential decrease of membrane potential -> parameter tau describes the dynamics of the LIF neuron



Goal of modeling: neurobiological plausibility

* (1i1) build up the model using (probably genetically coded) canonical neural
network elements (functional circuits)

* Neural network units with a specific neural-level function, appearing in a large-scale
neural network at many places

* tiny building-blocks within all modules of the large-scale model (-> CMC model)

* Examples:
* neural buffers (ensembles) for input encoding / output decoding of “values” (next
slide)
 forwarding and processing lower-level information (2" next slide)

* specific recurrent neural buffers (ensembles) for generating dynamics (oscillations,
short-term memories) (3 next slide)



defining neural buffers (neuron ensembles) for input encoding / output

decoding  (a)

gty ensemble ensemble Muscle

put . . fiber

. 13 ”» — \
representing a “value . - 00O > - ﬁ>. . O .
(intensity) (strength)
| .

value (t)  encoding a crt':’l:tr: I(t) ac:i?r?t? () decoding value (t)

input signal (red) decoded output signal (blue)

A
d

— 1.0 — 10 ‘\_“_,,..‘-.«»u.,.,‘_,‘_.m
representing a “value” ; iy NEF
t. -g 0.0 'g 0.0 X W:“.‘, : .
overtime =l = Eliasmith 2013
@ -10| ‘ . M© -1.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
time [s] time [s]
spike pattern (20 neurons)
1

oo o sarons A
depending on accuracy needed 5/,

g 100 TN (]
S
f:-' T I
15
2(())0 0.2 0.4 0.6 0.8 1.0
| | | _— | Kroger 2023, JIN

time [s]



forwarding and processing of lower-level information: neural connections

connections
including

link weights ens_B
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input x y output
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recurrent neural ensembles for generating dynamics -> oscillations
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Beyond coding of “values™ Coding of “items”

Eliasmith 2013: How to build a brain
Stewart & Eliasmith 2014: IEEE

_ review on semantic pointer
Values (NEF) = architecture

— moving forward towards cognition

* loudness, frequency, muscle strength

* -> directly coded by neuron ensembles as a specific “value”
Items (SPA) =

* a word (concept, lemma, phonol. form) ,

* a syllable (phonol. form, gesture score, higher-level auditory form, pre-
motor pattern)

* a sentence meaning, a thought, a decision, ... (abstract cognitive)

Beside NEF-SPA system (Eliasmith et al. 2014) < includes a concept for cognitive modeling
NEST simulator for building up complex models (Gewaltig et al. 2012)
NEURON tool box (Hines Carnevale 2001)



Beyond coding of “values™. Coding of

* the idea: items = represented by vectors (S-pointers)

* need: up to D=500 dimensions in case of a vocabulary of
60.000-100.000 items (mental lexicon, each level)

* the vector (mathematics) is only in the background as a

valuable helper:
* behavioral level:

* vector points on items: cat / dog
 quantifies similarity / dissimilarity of items = distance in

vector space
* neuronal level:

* each value of the vector is coded as activation pattern
in one of D neuron ensembles (each with N neurons)

* neuron buffer: hosts states = neural representations of

items

* typically: D=64 (1000 items vocab) N = 50...100 -> 3200...

6400 neurons
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S-pointer and Semantic Pointer Architecture

(@ Compression (b) Decompression

(higher-level cortical)
Semantic Pointer abstract, cognitive Semantic Pointer

D =500,N=20 @ Smaller Neural Population @ D =500, N =20
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(primary cortical) [:‘ z I Inner activation
(or for syllables:

each ensemble: N = 20
representing pixels
of picture
abstract higher level: phonological form /pla:/
concrete lower level: sensory: auditory, somatosensory;
motor: pre-motor gesture plan; motor: detailed muscular activation)




S-pointer and Semantic Pointer Architecture

Defining similarity
Example: word concepts

Linguistic Inference (cognitive level )

) "is a vertabrae"l
S-pointer networks: reTEm———
(Coding of associations) | | “can bite" T oreathes |

(Coding of similarity relatIiO‘nS‘)“ “““““““““““““““““““““““““““““““““““““““““““ :
(assomahon with’environ '

__________________________________________

| "has incisors"

O Neural pop. in hierarchy

Visual SP O Tactile SP C) Auditory SP O

—>  Neural transformation

|:| Neural representation

SP Semantic Pointer

Z‘z ?\ ' Definition of Symbols
~ NN

_____________________________________________

Perceptual Simulation

________________

Re!ated Concept

Mental images, auditory simulations, ...
barking, meowing, ...



Summary: neurobiological plausibility

Build up a complex (large-scale) model using canonical neural network
elements (SPA)
* defining basic motor, sensory, or cognitive functions
* Basic network elements within different modules of main functions (-> CMC
model)

Further examples:
* Represents items with or without similarity relations (next slide -> state buffers)
* Holds items in short term memory (2" next slide -> recurrent buffers)

* Associating items: phono forms -> semantic concepts (mental lexicon) (3 next
slide -> associative memories)

* Binding of items (states) allows reasoning, allows representation of sentence
meaning, etc. (4" next slide: binding buffers)



Represents items with or without / with similarity relations: state buffers

(a)

similarity plot
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Holds item representations (S-pointer) in short term memory: recursive

buffers

neuron buffer
state buffer
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Associating items: transformation -> associative memories

(d ) associative memory
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binding of items (of states): binding buffer and binding network

oce ooe . .,. - bUHe C
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unbinding buffer
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Sentence meaning: R_action * C_drinking + R_agent * C_Benno + R_patient * C_coffee -
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- One binding buffer: inputs:
C_:concepts roles (buff_A) and concepts (buff_B)
E_: event meaning come in synchronously over time

last step: additive integration (?)



The perception-production model

* just using canonical neural network elements: -> large-scale
network for speech production and speech perception (language
processing)

* have pre-defined form for representation of items:

* mental lexicon: phono-forms, concepts, lemmata: noun, verb, determiner,
adjective, preposition

* syntax: dependency arc names:

* sentence level semantics: event description in terms or role-concept pairs

* pre-defined structure for network modules: Three levels of
representations in the mental lexicon (strongly associated / connected)
« Semantic level: cat-dog, car-bike, eat-drink, ...
* Phonological-level: /kEt/-/ka:/, /dOg/-/drank/, ...
 Lemma level: determiners (the-a) vs. adjectives (god-bad), vs. nouns vs. verbs, ...



Neural model of mental lexicon  inciuding word processing pathways
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S Im u Iatlon exam ple prOd UCt|On Picture naming with distractor word
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SlmUIat|On example prOdUCthn Picture naming with distractor word
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SlmUIatK)n example productlon Picture naming, no distractor word
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Goals of modeling

* beside: neurobiological plausibility

* simulation of psycholinguistic testings / experiments

* further goals: simulation of diagnostic testings (screenings)

the correct item wins

phono level coactivation

* simulation of therapeutic treatment scenarios (if the model is capable of learning)



Neural model of mental lexicon
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Kroger et al. 2020
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The syllable level and articulation

* three levels on production side:
* (i) phonological (= raw gesture score already: gestures as lexical units) vs.

* (ii) motor plan (= fully specified gestures but not fully specified muscle activity
patterns = not the articulator positions level) <-> premotor, and:

sensory representations (higher sensory processing level as well)

* Beyond: (iii) motor realization = motor program
* fully specified muscle activation pattern (fully specified movements)
* is that stored in mental syllabary for frequent syllables?
* because: fast adaptation in case of injury at the level of articulatory system (glossectomy,
bite block experiments, ...)

* we (Aachen/Geneva) separate planning and programming in the same way: Jouen, Fougeron
& Laganaro (2024), Kroger (2022) frontiers in, Kroger (2023) JIN

* shortcoming here (Kroger & Bekolay 2022): todo: coupling of a neuro-muscular acoustic-
articulatory model (there is one: Sanguineti et al. 1998)
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The complete speech processing model

* |In agreement with Common Model of Cognition (CMC)
* But:

* recurrent neural networks (Google OpenAl) allow training but stay
“‘unstructured”

* Training (modeling speech acquisiton):

* still complex for biologically inspired models (spiking neuron
approaches like NEF and SPA);

* and: there is no approach for network growth



Developmental model of word processing
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In red: sensory feedback regions for enabling sensory-motor integration

from: Kroger et al. 2022 frontiers in
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Comparison our model vs. NLP-approaches:

* Simple nearly unstructured recurrent NLP network models can profit from
powerful training algorithm (free ontogenetic development of the model;
individual development of a model following birth)

* Example: Google translation system (see slide above)
* Leads to free formation of lexical, syntactic, semantic representations
* Leads to free formation of the inner structure of the network layers which

represent the modules (lexical, syntactic, semantic processing) in a largely
interwoven manner (parallel and hierarchical architecture)

* These models outperform neurobiologically based networks, outperform our models
as well as humans



Discussion of our approach:

* Our neurobiologically plausible approach:
* predefinition of module architecture and
* predefinition of lexical, syntactic, semantic representations
* Advantage: the model is able

* to simulate network growth during speech acquisition, and

* to simulate different stages of speech acquisition -> next slide (remark: no growth
modeling in NLP networks!)

* The model is able

* to model neural damage by insertion of neural dysfunctions in specific functional or
anatomical parts of the model (stroke, traumatic brain injury) and

 to simulate screenings and thus: symptoms of speech disorders / speech errors

* To give high quality results concerning the association of neurofunctional damage
and resulting speech symptoms -> will increase our knowledge about / our definitions
available for different types of speech disorders



(provocative) conclusion:

* Having in mind that google’s translation neural network outperforms humans :

* The phylogenetic development of the brain (evolutionary history of brain
development of humans during last 50.000 years) — the structure of the brain
limits performance of training

* Evolution limits performance?

* Hypothesis: training of an unstructured brain network would take too long,
longer than parents can care for the child by a specific ontogenetic
development

* ((like: some animal must be able to get up, stand upright, and move
immediately after birth))
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