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Abstract—Speech motor learning is still an under-discussion 
process in neural computational modeling. In this paper we focus 
on the relationship between vowel articulation and its muscle 
activation patterns, propose a neural understanding of speech 
motor learning and elucidate the neural strategy for speech 
learning of infants. An existing physiological model including 
speech articulator organs which has successfully replicated the 
biomechanical articulatory movement has been used. Self-
organizing map related to the contour positions of control points 
and muscle activation patterns was established during speech 
motor learning. Experimental result refer to the one-to-many 
problem in the mapping between the high-level to the low-level 
motor states, which indicates that quite different muscle 
activation patterns can lead to similar articulatory positions. 

I. INTRODUCTION 

Neural control model of speech production is important for 
exploring the speech production mechanism of human being. 
Computational model of speech production has been 
formulated since the middle of the twentieth century, when 
the first model was proposed [1]. Speech motor learning is an 
important part of neural-computational modeling, which 
states the relationship between target position of articulatory 
movements and muscle activation patterns acting on 
articulators. 

According to the DIVA (Directions into Velocities of 
Articulators) model [2-5], speech production needs 
feedforward and feedback control pathways. The feedforward 
pathway directly controls the articulator movements. The 
approach proposed by Kröger [6-8] postulates a mental 
syllabary, where auditory states, motor plan states, and 
somatosensory states of all frequent syllables are stored using 
a self-organizing map (c.f. [9]), which is called “phonetic map” 
in that approach.  

The approach postulated in this paper is based on the 
Kröger model and constructs a specific modeling of motor 
execution: The motor plan of a speech item is processed by a 
self-organized motor execution map, which generates specific 
muscle activation patterns for each speech gesture at the level 
of the primary motor map. Thus, we are using a physiological 
articulatory model, which is based on the morphological and 
physiological characteristics of the human speech organs, and 
driven by muscle activation patterns [10-11]. 

II. BACKGROUND FOR SPEECH PRODUCTION NEURAL 
CONTROL STRATEGY 

In this section, we will give a brief overview concerning 
the whole structure of our neural model and its interface 
towards the physiological articulatory model [10-11]. 

A. Structure of Neural Control Model 
In speech production, auditory, somatosensory, and motor 

information are integrated [3]. There are intricate interactions 
among different levels, starting from an intention, over 
selection of lexical items, generation of a phonological form 
towards the generation of articulatory movement patterns and 
the acoustic speech signal [12]. Since there are a number of 
important functions that could not be taken into account in 
this study, we deal with them based on certain hypotheses. 

As feedback information, beside an acoustic (auditory) 
representation, a somatosensory representation is needed in 
order to control the correct execution of a motor plan. 
Somatosensory signals can be subdivided into tactile and 
proprioceptive signals. As feedforward information we use 
two levels of motor states: high-level motor state describes 
the movement pattern of articulators (i.e. contour points at 
surface of model articulators; red points in Fig. 1); low-level 
motor state describes the muscle activation patterns which 
lead to specific articulatory movements and positions. 

 Fig. 1 gives an overview concerning the whole structure of 
the neural control model, including the motor map, the 
auditory and somatosensory map, and the interconnecting 
phonetic and execution map. The term “map” is used to 
describe a set of model neurons, capable of representing a 
specific state of a speech item (e.g. motor, auditory, or 
somatosensory state) or speech knowledge (e.g. within motor 
execution and phonetic map). The later type of map is 
implemented as self-organizing map (SOM) [8]. 

Phonetic map is associated with high-level motor state, 
somatosensory state, and auditory state. In addition now, in 
this approach a further training is needed for association of 
high-level and low-level motor state by motor execution map 
(see the next chapter).  

 
 



During speech learning, these neural associations via self-
organized phonetic map and execution map are adjusted [8]. 
The model gains some knowledge concerning the sensory-to-
motor associations in phonetic map and different level motor 
associations in execution map, concerning typical realizations 
of some language-specific speech items. During speech 
production, the knowledge stored in the execution map 
generates muscle activation patterns leading to specific target-
directed articulatory movements and consequently to the 
generation of acoustic speech signals. This process is 
simulated by the physiological articulatory model. Feedback 
signals such as somatosensory and auditory signals are used 
for learning in combination with motor signals. 

B. Physiological Articulatory Model  
The physiological articulatory model, which is used in this 

approach, was proposed by Dang and Honda (2004). The 
model is a semi-3D physiological articulatory model that 
consists of the tongue, jaw, hyoid bone, and rigid vocal-tract 
walls. The morphology of the speech organs was measured 
based on volumetric MRI data obtained from a male speaker 
and 11 major muscles are included in the tongue model [13]. 
The model is driven by the muscle activation pattern to 
produce speech movements, and then synthesizes speech 
sound using the transmission line model via the vocal tract 
shape.   

C. Muscle combinations for motor learning 
 The most effective way to form a tongue shape by muscle 

contraction, according to the minimal energy principle [11], is 
for two agonist muscles to work together to achieve a given 
target. For example, the GGp and HG show diametrically 
opposing directions in experiments [11]. This indicates that 
the GGp and HG work antagonistically in governing the 
tongue dorsum movements. Similarly, the GGm and SG form 
another antagonist muscle pair. Our simulations indicate that 
the two muscles of the muscle pair worked in synergy for one 
articulator, while functioning as an antagonist muscle pair for 
another one. Furthermore, to simulate co-contractions bet-

ween agonist and antagonist muscles, several three-muscle 
combinations have been designed. A three-muscle group 
consists of an independent muscle and a muscle pair, in which 
the activation of the independent muscle corresponds to the 
co-contraction level and governs a main part of the tongue, 
while the muscle pair manipulates the other part (e.g. tongue 
tip) via the mechanism of co-contraction of the agonist and 
antagonist muscles. This property can be used within our 
model to achieve multiple spatial targets (targets of different 
articulators) simultaneously, based on a strategy that 
accurately guarantees to reach a crucial target [11]. 

 

Fig. 1   Structure of whole neural control model. Two SOM maps are 
used: (i) Phonetic map is associated with high-level motor state, 

somatosensory state, and auditory state map. (ii) Execution map is 
associated with low-level motor state and high-level motor state. 

III. EXPRERIMENT  

High-level motor learning is involved in our neural 
computational model experiments but was already described 
in previous publications [8]. It has been elucidated there that 
speech production knowledge can be learned (i) by neural 
associations between the self-organizing map and high-level 
motor state, somatosensory state, and auditory state map, and 
(ii) by the organization of this map itself.  

In this paper, we mainly focused on execution motor 
learning, which connects the high-level motor states and the 
low-level motor states by introducing a self-organizing motor 
execution map. 

A. Training Set for Motor Learning  
In order to explore the low-level motor learning (i.e. 

organization of the execution map), corresponding muscle 
forces and articulatory contour points were generated as 
training items. As a starting point of babbling, we defined 
three ‘extreme proto-vocalic tongue states’ (high-front, high-
back and low-back) forming palatal, velar, and pharyngeal 
proto-vocalic constrictions (Fig. 2).  

Typical tongue movements have been generated as training 
set using major muscle combinations as mentioned in the 
previous section. 10 most efficient muscle combinations have 
been chosen [13]. The muscle groups include [GGm, HG, T-
SL], [HG, GGm] for low tongue states, [GGp, MH] for high-
front tongue states, [SG, MH], [SG, T-SL, MH], [GGp, SG] 
for high-back tongue states, [GGm, GGp], [GGm, GGp, SL] 
for mainly front and [SG, HG], [HG, SG, T-SL] for mainly 
back tongue states. 

 

Fig. 2   ‘Extreme proto-vocalic tongue states’ (low, high-front, 
high-back) muscle pairs effect. 

The 10 muscle combinations almost include all the tongue 
movements, so the set of these 10 muscle combinations were 
used as a basis for generating a set of whole proto-vocalic 
tongue babbling movements. And according to these muscle 
combinations we defined the ‘extreme proto-vocalic tongue 



states’ as the starting point of the training set. Because this 
vowel space is six dimensional (two dimensions for each of 
the three tongue contour points), a hyper plane is generated in 
the six-dimensional space. The training set is visualized in 
two dimensions for tongue dorsum contour point displace-
ment in Fig. 3. 

B. Neural representation of motor states 
The neural representations used for the motor states 

including high-level motor states and low-level motor states 
are shown in Fig. 4.  

For high-level motor state, we used neural representations 
of three tongue contour points [10]. m represents the relative 
location of current control point position according to its rest 
position. Contour point displacement of 1.5 mm and above 
leads to maximum neural activation. 
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For low-level motor state, muscle activation patterns are 

generated for 15 articulator muscles. Activation forces f for 
each muscle were set from 0 to 6N [10]. Neuron activation for 
muscles is represented using a logarithmic function. 
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C. Training Result of Execution Map 

 

Fig. 3   Training set for motor execution map in the view of tongue 
contour point for tongue dorsum. 

As training result, an execution map and its synaptic links 
to the two motor state maps were trained using a 15×15 SOM. 
The number of training items was 1800. Synaptic link weights 
become stable after round about 600 iterations of training. 
After SOM training, each model neuron of SOM represents a 
learned (proto-vocalic) state. The articulatory positions of 
contour points inside each model neuron are mapping to a 
corresponding muscle activation pattern.  

      

 
Fig. 5   Display of SOM link weights after training of execution 

map. The red point within the box, representing each model neuron 
within 15x15 SOM map, represents displacement of tongue dorsum 
contour point (high-level motor state). The vertical bars represent 

muscle force pattern for the 10 muscle combinations, as are defined 
in the text (low-level motor state). 

Low High‐back 

 

Fig. 4   Example of neural representation for motor states. Model neuron 
activation patterns are displayed as box-arrays. Degree of neural activation is 

displayed as grey scale (black refers to full activation). 

High‐front 

 
Fig. 6   Display of two groups of six example neurons, exemplifying 
the one-to-many problem, as it is solved in our SOM execution map. 
The two boxes in foreground give an example, how different muscle 

activation patterns can lead to a similar high-level motor state. 

(1) 

(2) 



Fig. 5 displays the association of higher- and lower-level 
motor states represented in each proto-vocalic SOM state. 
Only the tongue dorsum position is shown here for high-level 
motor state (red point inside each model neuron). The vertical 
bars represent activation pattern for the major muscle of 
tongue positions (ordering according to [10]: GGa, GGm, 
GGp, HG, SG, SL, Vert, Tran, T-SL, IL, GH, MH, JawOp, 
JawCl). It can be seen from Fig. 5 that vocalic tongue 
positions continuously change from left-top corner (low 
tongue position) to right-bottom corner (high-front tongue 
position), which means that basic vocalic features like front-
high, back-high, and low have been learned during the SOM 
training.  

As shown in Fig. 6, the execution map exhibits areas with 
little variance of tongue positions, while the associated 
muscle activation patterns strongly vary. This is an 
exemplification of the “one-to-many” problem. For a given 
muscle activation pattern, a unique articulatory configuration 
can be found, while the mapping from spatial position to 
muscle activation patterns is not unique.    

D. Evaluation 
Fig. 7 gives visualization for our first evaluation experi-

ment concerning the one-to-many problem. In the figure, 
there are 225 points, reflecting the 15x15 SOM neurons. 
Small circle or small fork with different color for each point 
reflects ten muscle combinations for tongue dorsum, the ten 
muscle combinations are  [GGm, HG, T-SL], [HG, GGm], 
[GGp, MH], [SG, MH], [SG, T-SL, MH], [GGp, SG], [GGm, 
GGp], [GGm, GGp, SL], [SG, HG], [HG, SG, T-SL]. The 
horizontal /vertical axis displays the gives the distance 
between the contour point position and the rest position. Thus, 
points with short distances, we can say that their contour point 
positions are almost the same. But these points can exhibit 
different colors (different muscle activation patterns) and 
furthermore the energies of them are different. The big oval 
areas give examples that some points with close distances but 
with different colors exhibit different muscle combinations. 

Evaluation experiment 2 is to evaluate the quality of the 
execution map SOM. We have known that the SOM training 
has found the muscle activation pattern for each tongue 
position defined by the tongue dorsum contour point by using 
a 15x15 execution map SOM. So we can compare the entire 
tongue contour defined by muscle activation patterns and 
defined by contour point position to evaluate the quality of 
this SOM for predicting correct muscle activation patterns for 
a given tongue contour as defined by three tongue dorsum 
contour points. 

The grid representation method (Fig. 8, using the distance 
d(i) (i=1,2,3,…,23) is used for calculating differences in 
tongue contour of initial tongue contours and tongue contours 
resulting from muscle activation patterns calculated from 
execution map SOM. 
 
 

 
 

 

Fig. 7   Display of first evaluation experiment. Each quadrant represents a 
typical tongue movement direction (high-front, high-back, low-front, and 
low-back). Different muscle combinations are shown in different colorful 

marks: [GGm, HG, T-SL] is taken as black fork, [HG, GGm] is taken as cyan 
fork, [GGp, MH] is taken as green plus, [SG, MH] is taken as green circle, 

[SG, T-SL, MH] is taken as blue plus, [GGp, SG] is taken as red plus, [GGm, 
GGp] is taken as black circle, [GGm, GGp, SL] is taken as red fork, [SG, HG] 

is taken as blue fork, [HG, SG, T-SL] is taken as red circle. 

 
Fig. 8   Midsagittal view of the vocal tract in our model. The first 23 

gridlines, reaching from lips to lower pharynx, were taken for 
calculating the vocal tract area and thus indirectly for calculating 

current tongue position within evaluation experiment 2. 

 
 
The mean difference in millimeters of the d-distance for 

each tongue position over all neurons of the execution map 
(225 neurons in 15x15 size map) is 0.684mm and the standard 
deviation is 0.252mm. Fig. 9 displays the difference between 
the entire tongue contour defined by muscle activation 
patterns and those, directly defined by contour point position 
for the typical tongue positions of three proto-vocalic states: 
high-front, high-back and low. From the figure the two entire 
tongue contours are almost overlapped together.  



 

 
Fig. 9  The entire tongue contour defined by muscle activation 

patterns (red lines) and defined by control point (blue lines) for three 
proto-vocalic states: high-front, high-back and low. 

IV. CONCLUSIONS 

A neural control concept for controlling a physiological 
articulatory model of speech production with phonetic map 
and motor execution map is introduced. The training of motor 
execution map is described in detail in this paper. From the 
training results it can be concluded that the knowledge 
concerning the association of high-level motor information 
(geometric contour points) and low-level motor information 
(i.e. muscle activation pattern in relation to contour points) 
can be learned by using a self-organizing map approach. In 
particular it has been shown that the “one-to-many” problem 

can be addressed by using our SOM approach. In further 
studies we will address the neural processing of consonants in 
the context of syllables and first words. 
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